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Abstract 
 Various techniques have been used to successfully assimilate ground based radar 
reflectivity into numerical weather prediction models. Assimilating reflectivity coupled with 
Doppler radar radial velocity has led to significant advances in storm-scale modeling of 
convection that produces severe weather. Assimilation of radar reflectivity using an ensemble 
Kalman filter requires the computation of simulated reflectivity using the hydrometeor mixing 
ratios and number concentrations contained in the model state. In several previous studies, 
reflectivity has been first calculated on the model grid using the model microphysics scheme and 
then included in the state vector, after which it is interpolated to the observation location. 
Alternatively, it is also possible to calculate reflectivity by first interpolating the state variables 
to the observation location and then subsequently computing reflectivity at the location.  Since 
the reflectivity forward operator is nonlinear, the two methods are not identical.  This research 
compares the differences between these two methods. Results from an idealized case indicate 
that calculating reflectivity in the forward operator when using adaptive inflation results in a 
storm with higher concentrations of rainwater mixing ratio, greater updraft velocities, and a 
cooler cold pool. Similar results were found in the real-data comparisons made using the 20 May 
2013 central Oklahoma tornado event. In this case, 0-1 hour forecasts of precipitation were 
improved when first interpolating the microphysical state variables to the observation points and 
then computing the reflectivity. While both assimilation methods have their advantages and dis-
advantages, the selection of which one to use can have a large impact on the resulting model 
analyses and ensuing forecasts.  
 
 
1. Introduction 
 
 Assimilating radar reflectivity into storm-scale numerical weather prediction (NWP) 
models has proven to be a challenging task, but has also shown to have great potential for 
improving severe weather forecasting (e.g. Gao et al. 1999; Dowell et al. 2004; Tong and Xue 
2005; Tong and Xue 2008a,b; Aksoy et al. 2009, 2010; Yussouf and Stensrud 2010; Dowell et al. 
2011; Gao and Stensrud 2012; Yussouf et al. 2013; Wheatley et al. 2015). Radar reflectivity is 
directly related to the cloud hydrometeor properties of precipitating clouds through the 
electromagnetic backscatters from a ~0.5-2 km3 volume of air having a variety of particle sizes 
and densities (Doviak and Zrnic 1993).  Often, mixed phase particles (water and ice) are present 
in a particular volume.  On the other hand, storm-scale models produce reflectivity grids that are 
generated from a variety of cloud microphysical parameterizations. The computation of 
reflectivity from cloud hydrometeors is a function of the particular cloud microphysics scheme 
used within the model (Tong and Xue 2008a,b; Jung et al 2012; Yussouf et al. 2013). Even when 
using multi-moment microphysical schemes, significant biases and errors have been 
demonstrated relative to the observed reflectivity structures in a variety of convective storms 
(Dawson et al. 2012; Jung et al 2012; Yussouf et al. 2013).   

When assimilating radar observations, the practical challenge for storm-scale data 
assimilation is to determine an accurate set of background error covariances that can be used to 
update the model’s state from the set of available observations.  Since storm-scale data 
assimilation is primarily a retrieval problem (rather than an analysis problem), the characteristics 
of the background state strongly controls the resulting analysis.  The forecast model’s inherent 
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biases and errors are difficult to determine due to a lack of knowledge of the internal state of 
convective storms, and therefore errors can significantly impact the resulting predictions.  These 
issues are particularly true for reflectivity assimilation, as current state-of-the-art microphysics 
parameterizations, while much improved over the last twenty years, still contain many random 
errors and biases (Tong and Xue 2008a,b; Dawson et al. 2012).  Complicating this is the 
nonlinear relationship between reflectivity and cloud hydrometeors leaving the forward operator 
sensitive to a particular scheme choice or scheme parameters chosen for the forecast model 
(Tong and Xue 2008a,b; Jung et al 2012; Yussouf et al. 2013).  

Several different techniques have been applied to radar reflectivity data assimilation with 
varying degrees of success. Hu and Xue (2007) derived a relationship between composite 
reflectivity and atmospheric latent heating tendency producing a parameter that can be 
assimilated into a NWP model without having to consider the uncertainties between reflectivity 
and hydrometeor concentrations as a function of microphysics. More recent research has focused 
on directly assimilating radar reflectivity through its known relationships to the various 
hydrometeor properties. This approach allows for a much better 3-D representation of convection 
within storm-scale models than the latent heating method. Many of these studies use the 
ensemble adjustment Kalman filter (EAKF) approach (e.g. Anderson and Collins 2009) with 
high degrees of success (e.g. Tong and Xue 2008a,b, Aksoy et al. 2009, 2010, Dowell and 
Wicker 2009; Yussouf et al. 2013).  

In principle, assimilating reflectivity using the EAKF approach should generate a realistic 
initial distribution of hydrometeors within the storm via the use of the background error 
covariances that are evolving and highly dependent on the current maturity and size of the 
convective storm. However, reflectivity biases in the model forecasts can have a strong negative 
impact on the analysis of state fields other than hydrometeors.  Dowell and Wicker (2009) 
demonstrated that negative biases within a supercell’s forward flank reflectivity region at low 
levels can lead to excessive cold pool deficits in the forward flank region of the storm.  Since 
ensemble mean reflectivity often has a low bias in these regions, and because the correlation 
between reflectivity and potential temperature is often negative, the analysis continually adjusts 
the temperature field to be colder.  These biases then lead to unrealistically cold temperatures in 
the storm’s forward flank cold pool.  The use of adaptive inflation (Anderson 2007, 2009) is 
needed to maintain ensemble spread, but can also exacerbate the biases in the non-linear forward 
operators, particularly when multiplicative inflation is used.  

 The work presented here explores in more detail the analysis and forecast impacts of 
various reflectivity assimilation methods used within the EAKF.  In particular, we will 
demonstrate that the nonlinear reflectivity forward operator and the adaptive inflation, applied at 
different stages of the analysis cycle, can generate significant changes in the resulting ensemble 
state’s analyses.   We use the EAKF present in the Data Assimilation Research Testbed (DART) 
system in combination with the WRF-ARW model to first examine the issue using an idealized 
observing system simulation experiment (OSSE) and then show similar behavior in a real data 
case occurring on 20 May 2013.  The results show that the analysis system is sensitive to 
whether the reflectivity is first computed on the model grid and then subsequently included as a 
component of the state vector (rather than being computed internally from a set of interpolated 
hydrometeors/number concentrations within the data assimilation system algorithms) and that 
due to the nonlinearity of the reflectivity operator, the use of adaptive inflation on the 
observational state’s priors also impacts the results significantly.  Hereafter, we will refer to the 
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temperature, hydrometeor mixing ratios, and number concentration variables needed to compute 
reflectivity from a particular microphysics scheme as the “microphysical variables”. 
 The goal of this research is to identify the origin of the differences observed in the 
posterior analyses caused by the manner in which radar reflectivity is computed and used in the 
assimilation process. Following the Introduction, Section 2 provides an overview of the two 
radar reflectivity assimilation techniques compared as part of this research. Section 3 
summarizes the EAKF and its relationship to radar reflectivity assimilation. Section 4 describes 
the idealized nature run and OSSE experiment design while Section 5 discusses the results of the 
idealized experiments. A discussion of the 20 May 2013 results follows in Section 6 with 
concluding remarks in Section 7. 
 
 
 
2. Reflectivity Assimilation Techniques 
 

The reflectivity factor (Z) is a measure of the radiation reflected back to a radar from a 
volume of scatterers, often precipitation hydrometeors (Rinehart 1997). Reflectivity is related to 
the characteristics of hydrometeors in a highly non-linear manner. It can be represented by the 
summation of the number of hydrometeors (Ni) with diameter (Di) over all drop sizes within a 
sample volume (Eq. 1). 

 
 𝑍 = 𝑁$𝐷$&      (1) 
 

Values for radar reflectivity factor can range from (< 1.0 mm6 m-3) for light precipitation to > 107 
mm6 m-3 for heavy rain and hail. Due to the large range of values, reflectivity factor is commonly 
converted into logarithmic units (decibels of reflectivity or dBZ) using Eq (2). 
 

 𝑑𝐵𝑍 = 10 log./ 𝑍     (2) 
 

For the remainder of this research, the term reflectivity will refer to logarithmic reflectivity in 
units of dBZ.  

 
When assimilating radar reflectivity, a forward operator is required to generate 

reflectivity from the model state.  In the ideal case, this forward operator should use code 
consistent with the model’s cloud microphysics scheme. Depending on which method is chosen, 
there are two places where the reflectivity forward operator can be applied within a “parallel” 
EAKF algorithm (Anderson and Collins 2007; Whitaker et al. 2008). First, the forward operator 
is applied on each ensemble member’s grid and the gridded reflectivity field is included in the 
ensemble state vector, similar to other state variables such as potential temperature or vertical 
velocity.  This “external” application of the forward operator (hereafter denoted as EFO) is 
applied prior to the assimilation step.  The gridded reflectivity is linearly interpolated directly to 
reflectivity observation location to create the priors needed for the data assimilation. The parallel 
algorithm then extends the ensemble state vector by appending all of the observational priors, 
from which the analysis update can be computed. Generally, it is reflectivity in dBZ space that is 
interpolated, not the original reflectivity factor, Z. Given the highly nonlinear nature of Z, it is 
likely that interpolating one or the other will produce different results when assimilating radar 
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reflectivity observations. As a result, both methods are tested within this research using the EFO 
assimilation technique.  

It is also possible to calculate reflectivity (dBZ) internally in the forward operator from 
the linearly interpolated hydrometeor state variables (Aksoy et al. 2009). This internal method, 
hereafter denoted as IFO, interpolates the individual hydrometeor variable in the state to the 
observation location after which the microphysics specific radar reflectivity formula is applied. 
The hydrometeor mixing ratio and number concentration variables are by nature nonlinear terms, 
which is problematic in a data assimilation system that often assumes linear properties. However, 
the reflectivity value calculated from the interpolated state is also more likely to be consistent 
with the hydrometeor characteristics at that location compared to reflectivity calculated using 
either Z or dBZ interpolation in the EFO method.  

Also, since reflectivity is no longer included in the state vector, its overall size becomes 
smaller, reducing the overhead required to run the EAKF. Additional complications become 
apparent when attempting to assimilate other closely related data sets such as cloud water path 
(CWP) or infrared radiances from satellite data (Jones et al. 2013a,b, 2014, 2015). For satellite 
data assimilation, the common approach is to calculate parameters such as CWP and/or infrared 
radiances internally within the data assimilation system using interpolated state variables. When 
assimilating both radar and satellite data, it was found that using the EFO method coupled with 
satellite derived priors computed internally (i.e., using an IFO approach for the satellite forward 
operator) could lead to poor analysis and forecasts in certain conditions. When reflectivity was 
computed internally from interpolated microphysical variables (e.g. IFO), the model analyses 
and forecasts were often improved.  
 
 
 
3. Parallel ensemble adjustment Kalman filter 
 
 To understand the differences between EFO and IFO, it is important to carefully describe 
the process by which these data are assimilated using the EAKF algorithm implemented in 
DART (Fig. 1). The prior state vector is first generated from the previous cycle of ensemble 
forecasts. The state vector generally includes prognostic variables such as pressure, temperature, 
moisture, hydrometeor characteristics, wind components and potentially diagnostic variables 
such as radar reflectivity (Table 1). Prognostic variables represent those that are modified during 
model integration and impact the forecast. Diagnostic variables are derived from prognostic 
variables and are not needed to advance the prognostic system forward in time. For example, the 
updated analysis of radar reflectivity from the EFO method has no direct impact on the model 
forecast, the field is simply replaced by the microphysics scheme’s calculation at the next time 
step.  
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VARIABLE    UNITS  TYPE 
U-WIND   ms-1  P 
V-WIND   ms-1  P 
W-WIND   ms-1  P 
GEOPOTENTIAL HEIGHT m  P 
POTENTIAL TEMP  K  P 
PRESSURE   Pa  D 
WATER VAPOR   kg kg-1  P 
CLOUD WATER  kg kg-1  P 
RAIN    kg kg-1  P 
ICE    kg kg-1  P 
SNOW    kg kg-1  P 
GRAUPEL   kg kg-1  P 
ICE NUMBER   Number  P 
RAIN NUMBER   Number  P 
DIABATIC HEATING  K s-1  P 
RADAR REFLECTIVITY dBZ  D 
Table 1. List of model variables includes in EAKF state vector for the idealized experiments. All variables except 
radar reflectivity are considered prognostic (P) variables. Reflectivity is a diagnostic (D) variable that is calculated 
from prognostic variables in the model and has no impact on model forecasts. All IFO experiments remove radar 
reflectivity from the state.  
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Figure 1. Flow chart describing the steps required for assimilating radar reflectivity into the EAKF system using 
external (EFO) and internal (IFO) methods.  
 
 Prior adaptive covariance inflation is applied to increase ensemble spread before data 
assimilation occurs (Anderson 2007, 2009). Inflation is required to maintain spread in the 
ensemble members to counteract the collapse of spread due to under-sampling of the true 
ensemble variance from repeated cycling. The DART system’s adaptive inflation (AI) factor is a 
time and state variable-dependent and evolves as a function of time. It has dimensions M x N, 
where M is the number of grid points and N is the number of state variables. The inflation factor 
inflates the perturbations between the prior state and observations. The larger the magnitude of 
the perturbations, the larger the AI applied.  In the EFO method, reflectivity would have its own 
AI field and this field is inflated prior to assimilation.  

For the IFO, reflectivity is computed from the inflated hydrometeors mass and number, 
which means that each variable used to calculate reflectivity is inflated independently prior to the 
calculation of reflectivity. After the application of AI, the prior state vector is linearly 
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interpolated from model space (x,y,z) to observation space for each observation to be assimilated 
and then reflectivity is computed from the interpolated state. Since AI has been applied to each 
individual variable in the state, the resulting prior reflectivity values incorporate the inflation 
from all these variables leading to an assimilation system with larger perturbations, increasing 
the magnitude of AI being applied. This impact is mostly likely to occur in areas of heavy 
precipitation where perturbations in the hydrometeor variables are greatest. 

If the relationship between prognostic and diagnostic variables was completely linear and 
no AI was applied, then reflectivity (dBZ) interpolated from the state vector (EFO) should be the 
same as reflectivity computed from the interpolated prognostic variables (IFO). However, since 
radar reflectivity has a fundamentally nonlinear relationship to prognostic variables, the resulting 
observational priors differ depending on whether EFO or IFO is employed or whether reflectivity 
is assimilated in Z or dBZ space. Furthermore, IFO requires the data assimilation system to have 
a particular microphysics scheme’s reflectivity calculation present within the radar forward 
operator. The current IFO option in DART using reflectivity calculated based on Lin 
microphysics. For recent GSI-EnKF research, reflectivity is calculated using WSM6 
microphysics (Johnson et al. 2015). For this research, both external and internal methods use the 
Thompson microphysics scheme to calculate reflectivity following development of a Thompson-
based reflectivity forward operator for DART (Thompson et al. 2004, 2008).  

In order to parallelize the data assimilation scheme, the EAKF system uses the extended 
state vector method to permit distributed memory parallelism.  For both methods, the extended 
state vector includes the reflectivity priors computed using either EFO or IFO. In the parallel 
implementation of the EAKF, observations are assimilated serially one after the other. The 
interpolated reflectivity priors in observation space are not recalculated from the updated state, 
but are directly updated by the data assimilation algorithm as part of the extended state vector.  
After the new analysis is generated, the posteriors in the observation space are computed via 
interpolation of the gridded posterior reflectivity field (EFO) or interpolation of the 
microphysical variables and application of the reflectivity forward operation (IFO). Following 
this step, observation diagnostics such as innovation, error, and ensemble spread are calculated. 
Finally, initial conditions for each ensemble member are generated from the filter and used to 
initiate forecasts for the next assimilation cycle.  
 
 
4. Idealized model 
 
a. Nature Run 

Both the nature run and the idealized data assimilation experiments used by this research 
are based on those described in Jones and Stensrud (2015). An overview of the previous 
discussion is provided here. The nature run in which a splitting supercell thunderstorm is 
simulated using the Weisman-Klemp analytic sounding with a quarter circle hodograph to define 
the vertical wind profile (Weisman and Klemp 1982, Fig. 2). A stationary horizontal grid using 
200 x 150 grid points with a horizontal grid spacing of 1 km is defined for the nature run. The 
nature run uses 51 vertical levels extending from near the surface to 20 km, with a mean vertical 
spacing of 400 m. The center of the domain is set to a reference latitude of 35°N and longitude of 
97.5°W.  A circular thermal warm bubble perturbation potential temperature of 3.0 K, decreasing 
to 0 K at a horizontal radius of 10 km, is placed at the surface at the center of the domain to 
initiate convection as in Jones and Stensrud (2015). The nature run is initiated with the 
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horizontally homogenous atmosphere defined by the input sounding and the warm bubble and is 
allowed to freely evolve thereafter. The nature run is integrated using version 3.4.1 of the WRF 
model (Skamarock et al. 2008) over a period of 120 minutes with output saved at 5 min intervals. 
The nature run utilizes Thompson microphysics (Thompson et al. 2004, 2008), with no radiation 
or boundary layer schemes applied. Both the nature run and the following experiments use open 
boundary conditions. 

 

 
Figure 2 Weisman – Klemp (1982) sounding profile used to create the environment for the nature run and each 
experiments. Perturbations are applied to temperature and humidity when each ensemble member is initiated. 
 
 The evolution of the idealized supercell can be shown by tracking the 3 km above ground 
level (AGL) reflectivity at various times during the nature run (Fig. 3). After only 20 minutes 
(t=20), a small area of greater than 55 dBZ reflectivity has developed along with a corresponding 
area of updraft velocity greater than 15 ms-1. By t=40, the area of high reflectivity has grown and 
the updrafts have split into two cores indicating the onset of a storm split. At t=60 and 
afterwards, the both storms continue to grow in size and diverge from each other. By t=100, two 
mature supercells have developed within the nature run, each having separate updrafts and 
reflectivity cores greater than 70 dBZ. 
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Figure 3. Nature run 3-km AGL simulated radar reflectivity at 20 (a), 40 (b), 60 (c), 80 (d), 100 (e), and 120 (f) 
minutes after the warm bubble has been inserted into the WK82 environment. Blue hatched areas indicate areas of 
4-km upward vertical velocity greater than 15 ms-1. 
 

Synthetic radar reflectivity is computed from the nature run by defining a radar location 
at 97.5°W, 34.3°N and assuming a VCP-21 precipitation mode scan strategy with 9 conical 
levels (Crum and Alberty 1993). Observation locations are defined using a gate spacing of 4 km 
with an azimuth resolution of 3 degrees with a maximum observation height of 10 km (Fig. 4). 
This is significantly coarser than the operational product so that the simulated observations are 
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larger than the model grid and also to reduce the impact of representativeness error. Reflectivity 
generated by Thompson microphysics scheme on the model grid is interpolated to the synthetic 
observation location. Synthetic observations are generated at 5 minute intervals through the 
duration of the nature run. Observation error for reflectivity is set to 5 dBZ, similar to that used 
by several previous studies (e.g. Dowell et al. 2004). The selection of the EFO method to create 
the synthetic radar observations was used since this method was considered the baseline for all 
the experiments. Calculating simulated observations using the other methods also generated 
similar results, so the EFO set was selected for all experiments. 

 

 
Figure 4. Plan view of synthetic radar reflectivity observation locations for a simulated radar location at 97.5°W, 
34.25°N. Note that observation resolution decreases as distance from the radar increases.  
 
b. Data assimilation 
 The EAKF approach assimilates synthetic radar reflectivity observations into a 
horizontally homogeneous initial state similar to that used by the nature run. Temperature and 
moisture perturbations are applied to the previous input sounding in order to generate initial 
conditions for a set of 40-ensemble members as in Jones and Stensrud (2015). The random 
perturbations have a Gaussian distribution with a standard deviation of 1 K for potential 
temperature and 0.5 g kg-1 for water vapor mixing ratio centered on the original sounding value 
and out to a maximum of two standard deviations at the surface and decreasing to near zero at 
the top of the sounding (20 km). For water vapor mixing ratio, any negative values are set to 0.01 
g kg-1 and any values causing super saturation are reduced to a value equal to saturation. No 
warm bubble is inserted in the initial conditions. As such, the development of convection within 
each experiment requires the assimilation of the synthetic radar reflectivity observations to 
initiate storms. 

The EAKF present in the DART software (Anderson and Collins 2007; Anderson et al. 
2009) coupled with WRF version 3.4.1 is used to assimilate observations and integrate forecasts 
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for the 40 member ensemble. The characteristics of the data assimilation system are very similar 
to those described in Jones and Stensrud (2015). The horizontal domain is centered at the same 
location as the nature run, but now has a larger 2 km horizontal grid spacing encompassing 150 x 
110 grid points. The vertical grid spacing and number of vertical levels are the same as those 
used in the nature run. Synthetic radar reflectivity observations greater than 10 dBZ are 
assimilated at 10 minute intervals for a period of 60 minutes at which time 60 minute forecasts 
are initiated for each member. For these observations, horizontal and vertical localization radii of 
18 km and 6 km respectively are applied using the Gaspari and Cohn (1999) technique. Adaptive 
inflation is applied to the prior state of each assimilation cycle to maintain appropriate spread in 
the model and prevent filter divergence (Anderson 2007, 2009). Initial prior inflation factor 
(inf_initial) is set to 1.0 with a standard deviation (inf_sd_initial) of 0.6. No outlier thresholds are 
applied to ensure the same number of observations are assimilated in all experiments.  

To test the impact of interval vs. external radar reflectivity assimilation and whether or 
not AI magnifies this impact, 6 experiments are conducted using this data assimilation system 
(Table 2). The first uses the EFO method with no adaptive inflation applied whereby reflectivity 
calculated from the Thompson code inside WRF 3.4.1 and included in the WRF output files is 
interpolated to the observation location to create the priors (EFO-N). A similar experiment is 
conducted in which reflectivity is interpolated in Z space instead of dBZ space (EFO-NZ). 
Adaptive inflation is then applied to both forming EFO-A and EFO-AZ respectively. The final 
two experiments use the internal method in which the Thompson microphysics code is added to 
the forward operator to calculate reflectivity from the interpolated state with (IFO-A) and 
without (IFO-N) adaptive inflation applied. By removing the adaptive inflation from one set of 
experiments, it will be possible to isolate the differences in the analysis due to just the 
interpolation from those due to the combined effects of interpolation and adaptive inflation. 
 
Experiment Forward Op.  Reflectivity   AI 
EFO-N  External  dBZ   NO 
EFO-NZ  External  Z   NO 
EFO-A  External  dBZ   YES 
EFO-AZ  External  Z   YES 
IFO-N  Internal  dBZ   NO 
IFO-A  Internal  dBZ   YES 
Table 2. List of experiments performed for both idealized and real-case (20 May 2013) data sets.  
 
 
5. Idealized experiments  
 
a. Reflectivity and hydrometeor characteristics  
 The number of assimilated observations increases from less than 600 at the first 
assimilation cycle at t=10 to 1200 at the final assimilation cycle at t=60 as the storm matures in 
the nature run (not shown). By t=60, all experiments have generated strong convection in the 
model as shown by the 3 km AGL model simulated radar reflectivity analysis at this time (Fig. 
5). All experiments are broadly similar in their characterization of reflectivity, but several small 
differences are apparent. EFO-AZ is the only experiment that fails to generate reflectivity > 65 
dBZ at this level and produces the lowest spatial coverage of reflectivity > 55 dBZ (Fig. 5d). 
Conversely, the IFO experiments generate larger areas of reflectivity > 55 dBZ than any of the 
EFO experiments with IFO-A generating the highest reflectivity values of all experiments (Fig. 
5e, f).  
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Figure 5. Ensemble mean 3-km AGL simulated reflectivity for each experiment at t=60. Blue hatched area indicates 
location where 4 km upward vertical velocity exceeds 15 ms-1.  
 
 The differences in the reflectivity characteristics of these experiments can be explained 
by analyzing the distributions of selected hydrometeor mixing ratio concentrations. Figure 6a 
shows the number of ensemble mean rain water mixing ratio (QRAIN) grid points at all model 
levels within 0.25 g kg-1 bins for values ranging from 1.0 to 8.0 g kg-1 at t=60. For all 
experiments, the number of grid points within each bin decreases rapidly as QRAIN increases. 
Differences between the non-AI experiments are small though IFO-N generates slightly more > 3 
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g kg-1 grid points than EFO-N while EFO-NZ generates the least. Once AI is applied, the 
differences become more apparent. EFO-A is still similar to the non-AI experiments, but now 
EFO-AZ generates far fewer > 2 g kg-1 QRAIN grid points compared to the other experiments. 
Conversely, IFO-A generates larger numbers of > 4 g kg-1 grid points than any of the other 
experiments. Figure 6b shows a similar distribution for graupel mixing ratio (QGRAUP) at t=60. 
As with QRAIN, the non-AI experiments are similar though EFO-NZ does generate somewhat 
less QGRAUP than EFO-N or IFO-N. Once AI is applied, the differences are magnified 
significantly. EFO-AZ generates the least QGRAUP while IFO-A generates the most, with the 
magnitude of the differences greater than observed for QRAIN. Differences in the concentrations 
for other hydrometeor species are generally smaller (not shown). 
 

 
Figure 6. Frequency distributions of ensemble mean QRAIN (a) and QGRAUP (b) mixing ratios at t=60 for each 
experiment. Bin size is 0.25 g kg-1.  
 

These differences can also be visualized by analyzing the vertical distribution of 
hydrometeor mixing ratios associated with the analyzed convection. The average QRAIN and 
QGRAUP from the ensemble mean analysis of each experiment are calculated for all grid points 
where reflectivity > 25 dBZ at each model level (Fig. 7a,b). Figure 7c provides the 
corresponding number of grid points > 25 dBZ used to calculate the averages for each 
experiment. Unlike the histogram distributions described above, the vertical profiles of QRAIN 
are noticeably different in the non-AI experiments (Fig. 7a). Below 800 hPa, EFO-N generates 
~1.1 g kg-1 at each model level. EFO-NZ generates less, 1.0 g kg-1, while IFO-N generates more, 
1.25 g kg-1. Between, 800 – 600 hPa, EFO-N and IFO-N becomes similar while EFO-NZ 
consistently generates less QRAIN. Differences between methods are magnified once AI is 
applied with IFO-A generating > 1.7 g kg-1 in QRAIN at each model level below 800 hPa (Fig. 
7a). Both EFO-A and EFO-AZ slightly decrease QRAIN in this layer compared to the 
corresponding non-AI experiments. Above 800 hPa, applying AI to the external method does 
increase QRAIN compared to the corresponding non-AI experiments, while IFO-A continues 
generating the largest QRAIN concentrations.  

Additional differences are apparent when comparing the vertical profiles of QGRAUP 
(Fig. 7b). QGRAUP generally increases with height up to near 500 hPa. Between 500 hPa and 
the surface, all experiments generate a similar QGRAUP profile with EFO-A and EFO-NZ 
generating the lowest concentrations and IFO-N and IFO-A generating the highest. Above 500 
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hPa larger differences between each experiment begin to emerge. In the 500 – 300 hPa layer, 
IFO-N generates a slightly higher average QGRAUP than EFO-N, which itself is higher than 
EFO-NZ. Applying AI again increases the differences between methods with IFO-A generating 
the largest average QGRAUP with EFO-AZ generating the least (Fig. 7b). Comparing the 
number of grid-points > 25 dBZ as a function of height also shows large differences between the 
experiments (Fig. 7c). IFO-A generates the highest number with over 300 grid points per level 
above 800 hPa. EFO-N is similar followed by IFO-N, EFO-A, EFO-NZ, and EFO-AZ. The latter 
two experiments also consistently generated the lowest average QRAIN and QGRAUP 
indicating that interpolating reflectivity factor instead of dBZ results smaller, weaker storms in 
the analysis. The high number of grid points for EFO-N was somewhat surprising, but further 
investigation revealed that this experiment generated larger areas of 25-35 dBZ reflectivity 
indicating larger areas of non-convective precipitation in this experiment. The corresponding 
QRAIN, QGRAUP, and number of grid-points > 25 dBZ from the nature run at t=60 are also 
provided for reference. In general, the nature run has lower QRAIN concentrations than most of 
the experiments while having similar to higher average QGRAUP compared to the experiments.  

 

 
Figure 7. Vertical profiles of ensemble mean QR (a) and QG (b) averaged at each model level over all grid points 
where analyzed reflectivity > 25 dBZ at t=60. Number of grid points > 25 dBZ as a function of height is provided in 
panel c. Dots indicate value at each model level.  
 
 While these results have shown that small differences exist due to changes in the 
reflectivity forward operator alone, it is clear that applying AI magnifies these differences. To 
better assess this the influence of AI, a frequency distribution of the prior AI factor applied to 
QRAIN and QGRAUP at t=60 is calculated (Fig. 8). The highest values correspond to the areas 
of highest QRAIN and QGRAUP in the prior mean analysis. Several differences exist in the AI 
distributions of QRAIN between EFO-A, EFO-AZ, and IFO-A experiments (Fig. 8a). For AI 
values between 3 and 4, EFO-A generates the greatest number of grid points while EFO-AZ 
generates the least. Between 4 and 7, all experiments are similar. For values higher than 7, IFO-
A consistently has the greatest number. Similar patterns exist for QGRAUP where EFO-A 
generates the highest numbers between 3 and 5, with IFO-A generating higher number of grid 
points where AI > 7. The goal of AI is to increase spread within the model, and the distribution 
and magnitude of this spread will impact the resulting model analysis. Since IFO-A generates the 
highest prior AI, the increase in spread in the strongest portion of the analyzed convection is also 
the greatest. The greater spread allows larger convariances between reflectivity and hydrometeor 
variables to exist, increasing their impact when assimilated. Conversely, EFO-AZ generates the 
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smallest prior AI factors resulting in less spread and a lower impact from reflectivity 
assimilation. 
 

 
Figure 8. Frequency distributions of prior adaptive inflation factor at t=60 for QRAIN (a) and QGRAUP (b). Bin 
size is 0.25.  
 
b. Cold pool and precipitation characteristics 
 The importance of adaptive inflation and reflectivity forward operator method are also 
evident when comparing the cold-pool characteristics from each experiment. At t=60, all 
experiments have generated a cold pool associated with the analyzed convection (Fig. 9). For 
non-AI experiments, IFO-N generates the coldest surface temperatures followed closely by EFO-
N and finally EFO-NZ. Applying AI does not further cool the the cold pools, but does alter their 
shape and spatial coverage. In general, these experiments are somewhat more “noisy” with the 
cold pool becoming intermixed with areas of warmer surface temperatures causing large 
temperature gradients in the analysis. This is most evident in the EFO-A and EFO-AZ 
experiments, but is also noticeable in IFO-A (Fig. 9b,d,f).  
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Figure 9. Ensemble mean surface temperature for each experiment at t=60. Nature run temperature less than 24°C 
is denoted by the black contour.  
 
 Differences in the analyses between each experiment have a significant impact on the 
ensuing forecast. To determine the immediate impact, the ensemble mean accumulated 
precipitation for a 10 minute forecast beginning at t=60 is shown in Figure 10. All experiments 
generate precipitation corresponding to the nature run, but have a general eastward bias. The 
EFO-NZ and EFO-AZ experiments generate the least amount of precipitation during this period, 
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consistent with the hydrometeor analysis above. Similarly, IFO-A generates the greatest amount 
of precipitation and is also the only experiment where the forecast precipitation maxima match 
well with those in the nature run (Fig. 10f).  
 

 
Figure 10. Ensemble mean 10 minute accumulated precipitation between t=60 and t=70. The nature run 
precipitation greater than 2 cm is denoted by the black contour.  
 

To quantify the differences in precipitation from each experiment relative to the nature 
run, the Equitable Threat Score (ETS) (Wilks 2006) is computed for accumulated precipitation 
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beginning at t=60 and continuing out to t=120.  For each ensemble member, if the experiment 
generates accumulated precipitation greater than a threshold value at a forecast time within ±6 
km of the nature run accumulated precipitation ending at the same time, this is considered a 
“hit”. If the experiment generates accumulated precipitation greater than the threshold and this 
threshold is not exceeded in the nature run, then it is considered a false detection. Finally, if 
neither the nature run nor the experiments exceed this threshold, then it is considered a correct 
null forecast. The “mean ETS” is calculated by averaging ETS over all ensemble members for a 
particular forecast time. ETS is calculated for 5 thresholds (0.5, 0.75, 1.0, 1.5, and 2.0 cm) to 
assess the difference in model skill in light vs. heavy precipitation (Fig. 11).    

 
Figure 11. ETS for accumulated precipitation between the nature run and forecasts ranging from 5 minutes to 1 
hour (t=65 min to t=120 min after the start of the nature run) for various precipitation thresholds.  
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 For all experiments, ETS increases as a function of time as the accumulation period 
increases. The highest ETS (~0.6) occurs using the 0.5 cm threshold with maximum values 
decreasing as the precipitation threshold increases. ETS for non-AI experiments are generally 
similar with EFO-N having somewhat higher skill for thresholds ≤ 1 cm and IFO-N having 
higher skill for the higher thresholds. This indicates that EFO-N does a good job of forecasting 
the light to moderate precipitation, but is less likely to generate heavy precipitation. EFO-NZ 
generally has the least skill of the three non-AI experiments. As before, the application of AI 
increases the differences between various reflectivity assimilation methods. For forecasts up to 
30 minutes, IFO-A generates the highest ETS compared to the other experiment for the 0.5 cm 
precipitation threshold. For higher thresholds, the increase in skill from IFO-A exists out to at 
least 1 hour though decreasing sample size reduces the statistical significance of this increase.  
EFO-A is similar to EFO-N for the lower precipitation thresholds, but EFO-A does increase skill 
for higher thresholds. Conversely, applying AI in EFO-AZ lowers skill relative to EFO-NZ and 
consistently has the lowest skill of the six experiments conducted. 
 The differences between hydrometeor, temperature, and precipitation characteristics 
between each experiment during the assimilation period indicate that the selection of reflectivity 
forward operator method and adaptive inflation is very important. When no adaptive inflation is 
applied, small differences in the characteristics of convection exist between the external and 
internal reflectivity assimilation methods. Once adaptive inflation is applied, the magnitude of 
these differences increases significantly. These results suggest that adaptive inflation is 
magnifying the inherent non-linearity present in the calculation of reflectivity. Further analysis 
using larger samples sizes and real data sets is necessary to determine if these differences carry 
over into the real world.   
  
6. 20 May 2013 Event 
 
a. Case study and experiment characteristics 
 Atmospheric conditions were highly favorable for tornadic supercells on 20 May 2013 in 
central Oklahoma. Convection was rapidly developing along the dryline by 1900 UTC and 
became tornadic within the next hour. To analyze this event, this research uses the ensemble data 
assimilation system similar to the one described in detail by Wheatley et al. (2015) and Jones et 
al. (2016) known as the NSSL experimental WoF System for ensembles (NEWS-e). The NEWS-
e uses WRF-ARW version 3.6.1 (Skamarock et al. 2008) coupled with the EAKF in DART 
(Anderson and Collins 2007; Anderson et al. 2009) to assimilate radar observations at 15 minute 
intervals in a 36-member ensemble.  
 The experimental domain utilizes a 1-way nest setup, whereby the parent and nested grids 
are run concurrently with information only exchanged at the lateral boundaries at 1-hour 
intervals once storm-scale data assimilation commences (with no feedback from the nested grid 
to the parent grid). The parent domain has a horizontal grid spacing of 15-km covering the 
continental United States, while the nested domain has a horizontal grid spacing of 3-km 
centered in central Oklahoma. Both parent and nested domains have 56 vertical levels ranging 
from the surface to a model top of 10 hPa. Initial conditions for the parent and nested grids are 
downscaled from the 21-member 0000 UTC 19 May Global Ensemble Forecast System (GEFS) 
forecast cycle. The GEFS also provides boundary conditions for the parent grid. Different sets of 
WRF model physics options are applied to each ensemble member to account for model physics 
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uncertainties (e.g. Stensrud et al. 2000). All members use Thompson cloud microphysics 
(Thompson et al. 2004, 2008) and no cumulus parameterization is applied on the storm-scale grid 
(Jones et al 2013; Jones et al. 2015; Wheatley et al. 2015).  

The mesoscale ensemble is integrated hourly, assimilating conventional observations 
including Mesonet, METAR, marine, radiosonde, ACARS, and satellite winds as described in 
Wheatley et al. (2015).  Horizontal and vertical localization radii of ~458 km and 6 km 
respectively are applied using the Gaspari and Cohn (1999) technique. Available Mesonet 
observations are only assimilated in the storm-scale domain using a smaller horizontal 
localization radius of 60 km. For this event, 15 minute cycling of radar data assimilation on the 3 
km nested grid begins at 1800 UTC and continues through to 2000 UTC, after which 1 hour 
ensemble forecasts are generated. Level 2 radar reflectivity and radial velocity observations are 
obtained from 3 Oklahoma radars (KFDR, KTLX, KINX) with observations reanalyzed to a 6 
km horizontal resolution grid using a Cresman analysis technique (Majcen et al. 2008). The 
number of radar reflectivity observations, not including clear-air reflectivity, assimilated 
increases from < 1000 at 1800 UTC to > 10000 at 2000 UTC. The number of clear-air 
reflectivity observations assimilated ranges between 12000 and 26000 (not shown). 

 Horizontal and vertical localization radii of 18 and 6 km are applied to both radar 
reflectivity and radial velocity observations. As in the idealized case, 6 experiments are 
conducted using the real data case. Experiments include EFO-N, EFO-NZ, and IFO-N, which 
represent the external method that interpolates dBZ, the external method that interpolates Z, and 
the internal method where reflectivity is calculated from the interpolated state each with no AI 
applied. The second set (EFO-A, EFO-AZ, and IFO-A) are similar, except that AI is now applied 
to each. Settings for AI are the same as those used for the idealized experiments. Additive noise 
is applied in all experiments to perturb the state where reflectivity > 25 dBZ in the fashion 
described by Wheatley et al. (2015). 
 Unlike the idealized case, Doppler radial velocity is also being assimilated in the real data 
experiments. Previous research (Gao et al. 1999; Gao and Stensrud 2012) used a fall velocity 
adjustment to account for the fall speed of hydrometeors in the calculation of radial velocity in 
the forward operator. The adjustment is maximized when comparing against radial velocity 
observations from higher scan angles. It has been found that including this adjustment in the state 
vector or calculating it within the forward operator can also significantly impact the analysis, 
especially near radar sites where high elevation scans of convection are common. In order to 
isolate the differences due to reflectivity alone, the 20 May experiments use the same fall 
velocity calculation inside the forward operator. The DART software includes a function based 
on interpolated density and reflectivity at the observation location to estimate fall velocity. Thus, 
the EFO calculates fall velocity from the interpolated reflectivity from the state vector and IFO 
calculates fall velocity from the reflectivity calculated inside the forward operator. (Other 
combinations are possible including using a state vector fall velocity in both or calculating the 
fall velocity from the Thompson microphysics code added to the reflectivity forward operator).  
 
b. Reflectivity and hydrometeor characteristics 

Following 9 assimilation cycles ending at 2000 UTC, all experiments generate several 
supercells in southern and central Oklahoma as shown by the ensemble mean of model simulated 
radar reflectivity at 3 km AGL (Fig. 12). Observed reflectivity from the Multi-radar, Multi-
sensor (MRMS) product > 45 dBZ is overlaid to compare against model analyses. Several 
differences are apparent between the experiments. EFO-N fails to generate reflectivity > 50 dBZ 
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corresponding with the northern storm (#1) which went on to produce the tornado in Moore, 
Oklahoma (Fig. 12a). Much higher values of reflectivity were generated for the southern OK 
storms (#2, #3). EFO-A is similar with the southern storms, but generates a much better 
representation of #1 than does EFO-N. EFO-NZ and EFO-AZ are generally similar with both 
generating reflectivity cores > 60 dBZ for all storms; however, the coverage of high reflectivity 
values is somewhat smaller in EFO-AZ, which is consistent with the EFO-NZ and EFO-AZ 
idealized experiments (Fig. 5,12). Finally, the IFO experiments generate the highest reflectivity 
values associated with #1 with IFO-A generating the highest values of any experiment for all 
storms (Fig. 12e,f).  
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Figure 12. Ensemble mean 3-km AGL reflectivity at 2000 UTC 20 May 2013 for each experiment.  
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To determine if these differences carry over to the hydrometeor characteristics of the 
analyzed convection, distributions of QRAIN and QGRAUP for the ensemble mean analysis at 
2000 UTC are computed in the same manner as in the idealized experiments (Fig. 13a,b). Both 
EFO-N and EFO-NZ generate similar QRAIN distributions, which are both less than IFO-N 
indicating that differences between the internal and external methods alone are having a 
measureable impact on the model hydrometeor analysis (Fig. 13a). As before, applying AI 
increases the differences between each assimilation method, with EFO-AZ generating the fewest 
number of QRAIN > 1.0 g kg-1 grid points and IFO-A generating by far the most. QGRAUP is 
similar except that the differences between the non-adaptive inflation experiments are smaller 
(Fig. 13b).  

 

 
Figure 13. Frequency distributions of ensemble mean QRAIN (a) and QGRAUP (b) mixing ratios at 2000 UTC 20 
May for each experiment. Bin size is 0.25 g kg-1. 

 
To assess these differences as a function of height, the average QRAIN and QGRAUP 

are calculated at each model level for grid-points where analyzed reflectivity > 25 dBZ for each 
experiment at 2000 UTC (Fig. 14). All experiments generate a maximum in QRAIN near 750 
hPa with values decreasing slightly towards the surface (Fig. 14a). QRAIN becomes small above 
500 hPa as most hydrometeors at these levels are of the frozen variety. A clear separation exists 
between the non-AI experiments with EFO-N generating the lowest values and IFO-N generating 
the highest, with an average increase of ~0.1 g kg-1 over EFO-N and 0.05 g kg-1 over EFO-NZ. 
Applying AI enhances these differences, but in two different ways. EFO-A and IFO-A generate 
higher QRAIN concentrations then their non-AI counterparts. However, EFO-AZ generates less 
QRAIN than EFO-NZ. Similar results were noted in the idealized experiments where applying 
AI to the experiments that interpolates radar reflectivity factor also resulted in a decrease in 
analyzed hydrometeor concentrations.  
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Figure 14. Vertical profiles of ensemble mean QR (a) and QG (b) averaged at each model level over all grid points 
where analyzed reflectivity > 25 dBZ at 2000 UTC 20 May. Number of grid points > 25 dBZ as a function of height 
is provided in panel c. Dots indicate value at each model level.  

 
For all experiments, QGRAUP gradually increases as a function of height staring from 

near zero at 800 hPa to values in excess of 1.0 g kg-1 above 400 hPa (Fig. 14b). Differences 
between the non-AI experiments are smaller, but IFO-N does generate somewhat higher values 
in the 600 – 200 hPa layer. As before, applying AI often magnifies the differences between 
experiments with EFO-A and especially IFO-A generating much higher QGRAUP 
concentrations than EFO-AZ. The number of grid points > 25 dBZ also differs between 
experiments with IFO-A having the most and EFO-NZ and EFO-AZ having the least (Fig. 14c). 
The much smaller number of precipitation-generating grid-points in EFO-NZ, compared to EFO-
N or IFO-N, could be a factor in why applying AI actually reduces hydrometeor concentrations 
rather then increases them. 

To assess the impact of AI, distributions of prior adaptive inflation factor are plotted for 
QRAIN and QGRAUP (Fig. 15). For both QRAIN and QGRAUP, IFO-A has the greatest 
number of grid points where AI > 2.5. EFO-A and EFO-AZ are closer, but differ in a couple of 
important aspects. First, EFO-A has the least number of AI grid points < 3.25 for both QRAIN 
and QGRAUP. However, EFO-A generates ~50 AI > 4 grid points whereas EFO-AZ generates 
virtually none. This corresponds to the overall smaller number of precipitating grid-points in this 
experiment and suggests that a prior analysis with fewer number of precipitating grid-points 
results in less prior AI applied to the state, which reduces spread in these regions. The reduction 
in spread reduces covariances between observations and the model state, limiting their impact 
and inhibiting optimal assimilation of the data. Conversely, the larger values from IFO allow for 
higher covariances and more optimal assimilation, generating stronger storms over multiple 
assimilation cycles.  
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Figure 15. Frequency distributions of prior adaptive inflation factor at 2000 UTC 20 May for QRAIN (a) and 
QGRAUP (b). Bin size is 0.25. 
 
 
c. Cold pool analysis 
 The differences in hydrometeor characteristics between each experiment also impact the 
cold-pool characteristics of the convection in the model analysis. Figure 16 shows 
ensemble mean surface temperature at 2000 UTC for each experiment. The magnitude of the 
cold pools differs between experiments with EFO-N having the weakest (warmest) and IFO-A 
having the strongest (coldest). This is consistent with the differences in hydrometeor 
concentrations observed between each experiment with larger QRAIN concentrations 
corresponding to colder surface temperatures. Limited verification of the surface temperature 
analysis is possible by comparing against OK Mesonet observations. Table 3 shows root mean 
square error (RMSE) between ensemble mean surface temperature at 2000 UTC and the Mesonet 
observations at 33 sites within the plotted domain. The non-AI experiments generate an RMSE 
~2.0 °C while the AI experiments generally have lower errors. IFO-A generates the lowest 
RMSE at 1.7 °C with the next lowest experiment being EFO-A. The improvement primarily 
results from the colder temperatures generated around the edges of the storms in the AI 
experiments. Unfortunately, there were no observations near the center of the cold pools to 
validate which experiment correctly analyzed their maximum strength. 
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Figure 16. Ensemble mean surface temperature at 2000 UTC 20 May 2013 for each experiment. Corresponding OK 
Mesonet observations are overlaid.  
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Experiment:  Temp RMSE (°C) 
EFO-N   1.98 
EFO-A   1.86 
EFO-NZ   2.10 
EFO-AZ   2.02 
IFO-N   2.04 
IFO-A   1.70 
 
Table 3. Surface temperature RMSE between the ensemble mean 2000 UTC analysis from each experiment and OK 
Mesonet observations calculated for the 33 sites within domain plotted in Figure 16.  
 
 
d. Precipitation forecasts 
 The ensemble mean one-hour (2000 – 2100 UTC) total accumulated precipitation 
forecasts for each experiment were created and compared against the Stage 4 precipitation 
product available from the National Centers for Environmental Prediction for the same time 
period (Fig. 17). The Stage 4 precipitation analysis shows maxima of 1 and 3 cm accumulated 
precipitation during this 1 hour period for all of the analyzed storms. The greatest rainfall 
corresponds with storm #3 in southern OK. All experiments generate three swaths of 
precipitation corresponding to the three primary storms. However, the characteristics of the 
swaths differ between experiments. EFO-N and EFO-NZ precipitation forecasts associated with 
storm #1 do not compare favorably to observations, with forecast rainfall being too weak and 
displaced north and east. EFO-A and EFO-AZ generate slightly better placement, but still under-
forecast total precipitation with storm #1. All EFO experiments perform well with storm #2, and 
significantly under forecast precipitation associated with storm #3. Finally, IFO-A generates the 
greatest amount of precipitation with the maximum precipitation cores agreeing well in 
magnitude and location to observations. ETS scores for 1 hour precipitation using thresholds of 
0.5, 0.75, 1.0, 1.5, and 2.0 cm were calculated in a manner similar to that used for the idealized 
experiments. For all experiments, ETS decreases as threshold increases indicating poorer 
forecast skill for higher rainrates (Table 4). The non-AI experiments have little skill at thresholds 
> 1.5 cm, consistent with the qualitative assessment above. EFO-A and IFO-A perform better at 
all thresholds and maintain at least some skill up to 2.0 cm. In particular, the ETS score from 
IFO-A using the 2.0 cm threshold, 0.132, is larger than the ETS using the 1.5 cm threshold from 
the other five experiments.  
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Figure 17. Ensemble mean one-hour accumulated precipitation forecasts for each experiment between 2000 – 2100 
UTC. Contours indicate location of Stage 4 precipitation observations greater than 1 and 3 cm over the same time 
period.   
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Experiment:  0.5 cm  0.75 cm 1.0 cm  1.5 cm  2.0 cm 
EFO-N   0.215  0.141  0.114  0.070  0.028 
EFO-A   0.343  0.311  0.264  0.128  0.036 
EFO-NZ   0.230  0.193  0.150  0.038  0.000 
EFO-AZ   0.212  0.176  0.155  0.065  0.013 
IFO-N   0.259  0.178  0.116  0.058  0.010 
IFO-A   0.410  0.347  0.297  0.235  0.132 
 
 
Table 4. One hour 2000 – 2100 UTC accumulated precipitation ETS for various thresholds against Stage 4 
accumulated precipitation analysis for the same period. ETS values are averaged from ETS calculated from each 
ensemble member.  
 
 
7. Conclusions 
 
 This study has shown that the method used to generate prior model reflectivity in 
observation space can make significant differences in hydrometeor characteristics of convection 
in the model analysis. Applying adaptive inflation only acts to increase the differences between 
methods such that hydrometeor concentrations can differ up to 100% between one experiment to 
another. Differences have been clearly demonstrated in both idealized and real-case experiments 
performed in this research. For the idealized experiments, the difference between using internal 
vs. external forward operators and interpolating in Z or dBZ space was generally small, but non-
zero. The application of adaptive inflation produces large differences compared to the non-
adaptive inflation runs and also increases the magnitude of the differences between various 
reflectivity assimilation methods. The experiment with adaptive inflation using the internal 
reflectivity forward operator (IFO-A) generated greatest QRAIN and QGRAUP concentrations, 
the strongest cold pools and heaviest precipitation. Analysis of precipitation forecasts compared 
to the nature run showed that IFO-A was more skillful at predicting moderate to heavy 
precipitation in the first 30 minutes. Differences between the experiments decrease as a function 
of time and most are similar by 1 hour as the impact of the model analysis decreases.  
 Comparisons between reflectivity assimilation methods for the 20 May 2013 case closely 
follow the trends observed in the idealized experiments. Differences in the non-AI experiments 
are more apparent with IFO-N generally producing higher QRAIN and QGRAUP concentrations 
then either EFO-N or EFO-NZ. As in the idealized experiments, applying AI greatly increased 
the differences between reflectivity assimilation methods. IFO-A generates convection with 
highest QRAIN and QGRAUP concentrations and stronger cold pools compared to the other 
experiments. It also produces the most skillful 1-h precipitation forecasts by correctly generating 
areas of heavy precipitation that the other experiments failed to generate or misplaced.  
 While arguments for and against internal vs. external reflectivity forward operators can 
be made, it is clear that the choice will have significant impacts on how reflectivity is assimilated 
into a storm-scale model. In general, the internal method produced the “stronger” storm, which 
sometimes allowed it to persist in model forecasts longer after data assimilation has ceased. This 
advantage does come with the increased complexity of adding the necessary microphysics 
information to the forward operator, but no additional computational cost is incurred. Another 
motivation for using the internal method is the likely increase in the number of diagnostic 
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variables to be assimilated into storm scale models in the near future. Examples include 
polarimetric radar observations, high-resolution satellite water vapor radiances, and satellite 
cloud property retrievals. Increasing the state vector to accommodate all these variables would 
not be practical and may also require very large computational memory since the entire state is 
stored. There is also the issue of mixing and matching internal vs. external forward operators for 
difference observation types. Since all these observations are directly related to hydrometeor 
variables, using a consistent approach with forward operators would likely produce more 
consistent results. 
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